| Name: |
|-------|
|-------|

Date:\_\_\_\_\_

## Math Club: Logarithmic Functions Worksheet #3

1. Solve each of the following:

| $\log(6-x)-2\log x=0$                  | $\log_3 x^3 - \log_3 3x = 3$                        | $\log_2(x-3) + \log_2(x+1) = 5$              |
|----------------------------------------|-----------------------------------------------------|----------------------------------------------|
|                                        |                                                     |                                              |
| $\log_7(x+1) + \log_7 x = \log_7 12$   | $\log_4 (16x - 64) - \log_4 (3x - 34) = 3$          | $\log(x-7) + \log(x+2) = 1$                  |
|                                        |                                                     |                                              |
|                                        |                                                     |                                              |
| $\log_3(3x+2) + \log_3 x = \log_3 56$  | $\log x = \frac{2}{3}\log 27 + 2\log 2 - \log 3$    | $2\log_4 x + \log_4 (x - 2) - \log_4 2x = 1$ |
|                                        |                                                     |                                              |
| $\log_2 16^{2x+1} = 8$                 | $(\log_8 a)(\log_a 3a)(\log_{3a} x^2) = \log_a a^5$ | $2\log(3-x) = \log 2 + \log(22-2x)$          |
|                                        |                                                     |                                              |
|                                        |                                                     |                                              |
| $\left(\sqrt{x}\right)^{\log x} = 100$ | $\log_5(x+3) + \log_5(x-1) = 1$                     | $2^{\log x^2} = 3(2^{1 + \log x}) + 16$      |
| $(\sqrt{x}) = 100$                     | 23 ( )                                              | 2 3(2 ).10                                   |
|                                        |                                                     |                                              |
|                                        |                                                     |                                              |
|                                        |                                                     |                                              |

2. Given each systems of equation, find all sets of real numbers (x,y) that satisfies it:

| $\log_x 4 + \log_y \sqrt{3} = 5$ $\log_x 8 - \log_y 9 = 13$         | $(3x)^{\log 3} = (6y)^{\log 6}$ $6^{\log x} = 3^{\log y}$                                                                   |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\log_8 4x - \log_8 y = \frac{4}{3}$ $4^{\log_4(4x-y)} = \log_2 16$ | $28y^4 = x^2 + 3$ $\log_x y^2 = \log_{y^2} x$                                                                               |
| $\log x - \log 3y = 1$ $3^{3x+y} = 27$                              | Solve the following system of equation: $\log x^3 + \log y^2 = 11  \text{and}  \log x^2 - \log y^3 = 3 \text{ Euclid 2003}$ |
|                                                                     |                                                                                                                             |

3. Find all "x" such that  $\log_2(x+2)+5=8+\log_2 x$ 

4. Find all "x" such that  $2 \log x - \log (24 - x) = \log 2$ 

5. Solve for "x" 
$$\log_2(2x+4) - \log_2(x-1) = 3$$

6. Determine the exact value(s) of all "x" such that: 
$$\log_4 x + \log_2 \sqrt{x-2} = 1 + \log_{16} (x-1)^2$$

7. Solve for "x": 
$$\log_a b + \log_{a^2} b = \log_{a^3} b^x$$

8. Determine all value(s) of "x" that satisfy the equation (find all the extranneous roots) 
$$\log_{5x+9}(x^2+6x+9) + \log_{x+3}(5x^2+24x+27) = 4$$

9. If  $\log_2 x$ ,  $(1 + \log_4 x)$ ,  $\log_8 4x$  are consecutive terms of a geometric sequence, determine the possible value(s) of "x". Euclid 2009

10. Given that  $\log \sin x + \log \cos x = -1$  and that  $\log \left(\sin x + \cos x\right) = 0.5 \left(\log n - 1\right)$ , find the value of "n". 2003 AIME

11. Determine the number of ordered pairs (a,b) of integers such that  $\log_a b + 6\log_b a = 5$ , with  $2 \le a \le 2005$ , and  $2 \le b \le 2005$ .

12. Solve the following system of equations: Note There are two solutions:  $\log_{225} x + \log_{64} y = 4 \& \log_x 225 - \log_y 64 = 1$ 

13. Determine all real solutions to the system of equations and prove that there are no more solutions: Euclid 2008

$$x + \log(x) = y - 1$$
  

$$y + \log(y - 1) = z - 1$$
  

$$z + \log(z - 2) = x + 2$$

- 14. Let:  $S_1 = \{(x,y) | \log(1+x^2+y^2) \le 1 + \log(x+y) \}$  What is the ratio of the area of  $S_2$  to the area of  $S_1$ ? 2006 AMC 12A
- 15. Let "S" be the set of ordered triples (x,y,z) of real numbers for which:

$$\log(x+y) = z$$
 and  $\log(x^2 + y^2) = z + 1$ .

There are real numbers 'a" and "b" such that for all ordered triples (x,y,z) in "S" have  $x^3 + y^3 = a \times 10^{3z} + b \times 10^{2z}$ . What is the value of a + b? AMC 2005 12B

## Euclid 1999



- Determine the coordinates of the points of intersection of the graphs of  $y = \log_{10}(x-2)$  and
- 23. Let S be the set of ordered triples (x, y, z) of real numbers for which

$$\log_{10}(x+y) = z$$
 and  $\log_{10}(x^2+y^2) = z+1$ .

There are real numbers a and b such that for all ordered triples (x, y, z) in S we have  $x^3 + y^3 = a \cdot 10^{3z} + b \cdot 10^{2z}$ . What is the value of a + b?

- (A)  $\frac{15}{2}$  (B)  $\frac{29}{2}$  (C) 15
- (D)  $\frac{39}{2}$
- **(E)** 24

- 9. (a) If  $\log_2 x$ ,  $(1 + \log_4 x)$ , and  $\log_8 4x$  are consecutive terms of a geometric sequence, determine the possible values of x.
- The solutions to the system of equations

$$\log_{225} x + \log_{64} y = 4$$

$$\log_x 225 - \log_y 64 = 1$$

## 2002 AIME

are  $(x_1, y_1)$  and  $(x_2, y_2)$ . Find  $\log_{30}(x_1y_1x_2y_2)$ .

- 4. Given that  $\log_{10} \sin x + \log_{10} \cos x = -1$  and that  $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n 1)$ , find n.
- 5. Determine the number of ordered pairs (a,b) of integers such that  $\log_a b$  +  $6 \log_b a = 5, 2 \le a \le 2005$ , and  $2 \le b \le 2005$ .
- A possible angle, x, in radians which satisfies  $\log_2(\cos(x)) = -\frac{1}{2}$  is:

- a)  $\frac{\pi}{6}$  b)  $\frac{2\pi}{3}$  c)  $\frac{3\pi}{4}$  d)  $\frac{4\pi}{3}$  \*e)  $\frac{7\pi}{4}$

(b) Solve the system of equations:

$$\log_{10}(x^3) + \log_{10}(y^2) = 11$$
  
 $\log_{10}(x^2) - \log_{10}(y^3) = 3$ 



(b) Determine all real solutions to the system of equations

and prove that there are no more solutions.

21. Let

$$S_1 = \{(x, y) \mid \log_{10}(1 + x^2 + y^2) \le 1 + \log_{10}(x + y)\}$$

and

$$S_2 = \{(x,y) \mid \log_{10}(2 + x^2 + y^2) \le 2 + \log_{10}(x+y)\}.$$

What is the ratio of the area of  $S_2$  to the area of  $S_1$ ?

- **(A)** 98
- **(B)** 99
- **(C)** 100
- **(D)** 101
- **(E)** 102

Euclid 2006

8. (a) If  $\log_2 x - 2\log_2 y = 2$ , determine y as a function of x, and sketch a graph of this function on the axes in the answer booklet.